Metal Heat Exchanger Sizing

Process Technology offers three basic configurations in its standard coil product line:

- Grid Coil
- "U" Coil
- Serpentine Coil

In addition, we also offer custom designed coils including helical and inline configurations.

METRICCONVERSIONS:

One liter $=.264$ gallons One $\mathrm{m}^{2}=3.2 \mathrm{ft}^{2}$
$9 / 5\left({ }^{\circ} \mathrm{C}\right)+32={ }^{\circ} \mathrm{F}$

(1)FORMULA FORSTEAM HEATING MEDIA:

Gallons to be heated	Temperature rise required $\left({ }^{\circ} \mathrm{F}\right)$	Steam pressure factor (see chart 1)	Square feet of area required for one hour heat-up		
A	\mathbf{X}	B	\mathbf{X}	C	Square feet of area required for one hour heat-up

Calculation process:
Step 1: Determine gallons in tank. Enter this amount at (A).
Step 2: Subtract the ambient temperature (${ }^{\circ} \mathrm{F}$) of the solution to be heated from the temperature to which it must be heated (operating temperature). Enter this amount at (B).
Step 3: Locate the steam pressure available at the tank on the Steam Pressure Factor chart below (chart 1) and find the factor number. Enter the factor number at (C).
Step 4: Multiply (A) times (B) times (C) and divide by 1000. This is the square foot area you require for a one-hour heat-up. If more time is available, the coil surface area may be reduced by dividing the square foot area by the heat-up time available (up to 4 hours maximum).
CHART 1

STEAM PRESSURE AVAILABLE/PSI	5\#	10\#	$15 \#$	$20 \#$	$25 \#$	$50 \#$	Above $50 \#$
STEAM PRESSURE FACTOR	.55	.50	.42	.37	.30	.25	Consult factory

(2FORMULA FOR HOT WATER HEATING MEDIA:

Step 1: Determine gallons in tank. Enter at (A).
Step 2: Subtract ambient temperature $\left({ }^{\circ} \mathrm{F}\right)$ of solution to be heated from the temperature to which it is to be heated (operating temperature). Enter at (B).
Step 3: Multiply (A) times (B) times 8.33. Enter your answer at (C). Step 4: Subtract the required solution temperature $\left({ }^{\circ} \mathrm{F}\right)$ from the temperature of your hot water supply. Enter this figure at (D).
Step 5: Multiply (D) by 100 and enter answer at (E).
Step 6: Divide line (C) by line (E) to determine square foot area required. If more time is available, coil surface area may be reduced by dividing the square foot area by the heat-up time available (up to 4 hours maximum).

(3FORMULA FOR COOLING WITH LIQUID MEDIUM:

$\left.$| Volts \mathbf{X} Amps $\mathbf{X \quad 3 . 4 1 2}$ |
| :---: |
| $\frac{\mathrm{A}}{100 \times$ (Required tank
 temperature) }(Cooling liquid
 temperature) |
| $=$Square feet
 of surface
 area required |
| A |$\frac{\mathrm{A}}{\mathrm{C}}=$| Square feet |
| :---: |
| of surface |
| area required | \right\rvert\,

This formula assumes that all electrical energy is dissipated in the tank as heat. In more efficient electrochemical conversions, the energy dissipated as heat may be less (consult factory).

Step 1: Determine watts by multiplying voltage times the amperage delivered by the tank rectifier. Multiply this product times 3.412 to determine BTUs. Enter answer at (A).

Step 2: Subtract cooling liquid temperature $\left({ }^{\circ} \mathrm{F}\right)$ from required tank temperature. Enter at (B). Caution: If this number is less than 15, consult factory for assistance in determining proper coil size.
Step 3: Multiply line (B) times 100 and enter answer at (C).
Step 4: Divide line (A) by line (C) to determine square feet of surface area required.

NOTE: These calculations do not take into account surface heat losses. Consult factory for solution temperatures of $170^{\circ} \mathrm{F}$ or higher. Check heat exchanger solution guide for proper sheath material selection.

METAL COIL PRESSURE DROP (FOR WATER)

Flow Rate (lpm)

Flow Rate (Ipm)

Flow Rate (lpm)

YOUR DISTRIBUTOR: Chemical Distributors, Inc.
80 Metcalfe Street • Buffalo, NY 14206 U.S.A. • Phone: 800-777-2436 • 716-856-2300 • Fax: 716-856-7115 www.cdibuffalo.com • E-mail: sales@cdibuffalo.com

